ABSTRACT

Urban cleanliness has always been at the forefront of the community's interest. One of the most persistent issues in this arena is ensuring that public trash cans do not overflow, leading to unsightly and potentially dangerous conditions. Addressing this issue directly, the GreenIn project represents an innovative combination of renewable solar energy and cutting-edge technology to improve waste management. Using a combination of solar panels and smart sensors, GreenIn monitors the level of litter bins in real time as well as gives the exact coordinates of the dustbin. As the reservoir approaches capacity, local authorities are immediately supposed to clear the bins.

Keywords: Dustbin, Greenin, Arduino, NODEMCU, Ultrasonic Sensor, Neo 6M GPS.

I. INTRODUCTION

Urban cleanliness has always been at the forefront of the community's interest. One of the most persistent issues in this arena is ensuring that public trash cans do not overflow, leading to unsightly and potentially dangerous conditions. Addressing this issue directly, the GreenIn project represents an innovative combination of renewable solar energy and cutting-edge technology to improve waste management. Using a combination of solar panels and smart sensors, GreenIn monitors the level of litter bins in real time as well as gives the exact coordinates of the dustbin. As the reservoir approaches capacity, local authorities are immediately supposed to clear the bins.

II. LITERATURE SURVEY

The "Internet of Bins" uses IoT for waste bin monitoring and route optimization. It addresses route efficiency. In comparison, GreenIn project offers a comprehensive solution that integrates IoT technology with renewable energy, GPS tracking, and user-friendly interfaces to tackle urban waste management challenges in a holistic way. [1]. The mentioned application focuses on waste separation using a conveyor belt system with data input via switches and RF technology. In contrast, GreenIn offers a comprehensive solution for urban waste management, including real-time monitoring, renewable energy use, GPS tracking, and advanced data management, presenting a broader set of features and solutions. [2] This project tackles overflowing urban waste bins by implementing an IoT Garbage Monitoring system that automates waste management. It continuously monitors bins, provides real-time data, and alerts collection vehicles when bins are nearly full. GreenIn offers a broader solution by incorporating renewable energy, GPS tracking, and advanced data management for comprehensive urban waste management, differing in features and scope. [3]. The paper focuses on an intelligent waste management system using RFID tags, readers, and load cells to measure waste
weights. It enables remote identification of bins in waste collection vehicles. In contrast, your GreenIn project offers a more comprehensive solution, integrating real-time monitoring, renewable energy, GPS tracking, and advanced data management for holistic urban waste management with a broader set of features and solutions. [4] The described system employs RFID technology and electronic monitoring to improve waste management. It integrates RFID with an Arduino micro-driver and a web-based system. GreenIn project offers a more comprehensive approach to urban waste management, incorporating real-time monitoring, renewable energy, GPS tracking, and advanced data management for a wider range of features and solutions. [5] The research paper discusses urban waste issues and introduces an IoT-based system for real-time dustbin monitoring and "DUSTBIN FULL" alerts via GPS-based SMS. Its goal is to improve waste management efficiency. In contrast, your GreenIn project offers a comprehensive urban waste management solution, incorporating renewable energy, GPS tracking, and advanced data management with a wider range of features and solutions. [6]. The project introduces a Smart Garbage Monitoring System with an ultrasonic sensor and Arduino UNO to alert when bins are full, using RFID tags and an Android app for remote monitoring. The GreenIn project offers a more comprehensive urban waste management solution, integrating renewable energy, GPS tracking, data management, and user-friendly interfaces, with a wider range of features and solutions. [7] The research paper introduces a Smart Garbage Monitoring System using IoT for real-time bin fill status and SMS updates. In contrast, your GreenIn project offers a comprehensive urban waste management solution with renewable energy integration, GPS tracking, data management, and user-friendly interfaces, providing a broader range of features and solutions. [8].

IV. DESIGN AND ARCHITECTURE OF THE GREENIN SYSTEM

The GreenIn initiative represents a sophisticated solution to the ongoing problems of municipal waste management. Through the seamless integration of multiple technologies, the system ensures effective waste

Figure 1: Block Diagram

[Diagram showing the block diagram of the GreenIn system]
monitoring and at the same time emphasizes an ecological approach. This combination of technology and sustainability is evident in every component and design decision.

GreenIn web application

The main purpose is to offer users (city officials and the general public) an interface for accessing and interpreting data. Upon logging in, users are immediately shown the real-time status of all bins, ensuring an immediate understanding of the situation on the ground. The application will immediately show the user if the tank is nearing its full capacity. Then using GPS sensor data, the exact location coordinates of each bin is available, helping waste management teams plan their route efficiently and ensuring the public can easily find bins.

![Bin when it's empty](image1.png)

Figure 2: Bin when it's empty

![Partially filled bin](image2.png)

Figure 3: Partially filled bin
Solar powered operation
Photovoltaic panels, optimally placed on or near GreenIn bins, are the primary energy collector. They actively convert sunlight into direct current (DC). Due to the sporadic nature of the sun, it is crucial to efficiently harvest energy during the hours of peak solar radiation. To ensure that the energy obtained from the solar panels is usable and safe for the system components, the GreenIn project integrates two voltage regulators, whereas the first one steps down the voltage to charge the battery pack and the second one which consistently provides a constant 5V output for the microcontroller and other equipment's. After the first conversion, energy is stored in lithium-ion batteries. These batteries were chosen for their high energy density and long life. During night times when sunlight is insufficient, the GreenIn system relies on these batteries to function. Different batteries cater to different system components, increasing modularity and simplifying maintenance.

System Operations
Data collection: Both the ultrasonic and GPS sensors are continuously active. The ultrasonic monitors the fill level of the bins, while the GPS provides accurate information on the location of the bins.

Microcontroller Role: This module is the heart of data operations. It processes input from both sensors, formats it for clarity and compactness, and queues it for transmission to Firebase.

Firebase Cloud Integration: This cloud platform is key to data storage and medium of management. All the information transmitted by the Microcontroller is stored here. Its design ensures efficient categorization of data, streamlining of search and analysis.

GreenIn Web App: All data stored on Firebase is accessible through this web app. Designed with end users in mind, whether city officials or the general public, this app offers a wealth of features:

Live Dashboard: Once logged in, the user will be shown real-time status of the bin, providing an instant overview of the situation on site.

GPS Tracking: Thanks to data from the GPS sensor, the exact location of each bin is available i.e., latitude and longitude on our web application, helping waste management teams in efficient route planning.

Data management and processing
In the digital age, the effectiveness of a system is often determined by its ability to manage and process data. Project GreenIn takes this philosophy to heart with a multi-level approach to data processing that is sophisticated and user-centric.
Data Acquisition

Ultrasonic Sensor: Located in each container, this sensor detects the current level of the container and offers an overview of the level of waste accumulation. Through continuous monitoring, the system can identify peaks for waste disposal, facilitating better planning for waste collection teams.

GPS sensor: This sensor, which provides accurate location data, each GreenIn bin is geo-tagged. This is invaluable not only for tracking the location of each bin, but also for spatial analysis to identify areas of high waste generation.

Data Transmission

The key here is the IoT module, which acts as a bridge between data collection and data storage. The data transmission is updated every 5 seconds, ensuring tight system feedback and enabling real-time interventions.

Data Storage and Organization

All this data is transferred to the Firebase cloud platform, chosen for its reliability and scalability. Here, data is categorized by bin ID, date, time, and data type (location or fill level). Such careful organization ensures that historical data analysis is possible, which can lead to predictive models in the future.

Data Presentation and Analysis

The GreenIn web app simplifies municipal waste management through a user-friendly dashboard that displays real-time bin status, accurate latitude and longitude locators, and the ability to analyze historical data. This modern approach aims to make waste management more effective and efficient.

V. CONCLUSION

With a seamless integration of technology and sustainability, the GreenIn system offers a glimpse into the future of municipal waste management. Through its proactive approach, it not only solves the immediate problems of overcrowded bins, but also paves the way for future data-driven and environmentally friendly waste management strategies.

Potential future improvements include:

- Advanced sensors to detect hazardous materials in waste, ensuring special handling and disposal.
- Integration with city-wide applications to inform the public about storage locations and fill levels, which promotes proper waste disposal. Analytical tools in a web application for forecasting trends in waste production and preparing for future challenges.

VI. REFERENCES

