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  ABSTRACT 

The Quasi-Newton (QN) method is a widely used stationary iterative method for solving unconstrained 

optimization problems. One particular method within the Quasi-Newton family is the Symmetric Rank-One 

(SR1) method. In this research, we propose a new variant of the Quasi-Newton SR1 method that utilizes the 

Barzilai-Borwein step size. Our analysis demonstrates that the updated matrix resulting from the proposed 

method is both symmetric and positive definite. Additionally, our numerical experiments show that the 

proposed SR1 method, when combined with the PCG method, is effective in solving unconstrained optimization 

problems, as evidenced by its low number of iterations and function evaluations. Furthermore, we demonstrate 

that our proposed SR1 method is more efficient in solving large-scale problems with a varying number of 

variables compared to the original method. The numerical results of applying the new SR1 method to neural 

network problems also reveal its effectiveness. 

Keywords: Unconstrained Optimization, Quasi-Newton Methods,, Line Search Method, PCG Method, Artificial 

Neural Network. 

I. INTRODUCTION 

Artificial neural networks (ANNs), usually simply called neural networks (NNs) or neural nets are computing 

systems inspired by the biological neural networks that constitute animal brains. An ANN is based on a 

collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological 

brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons. ANNs 

applied in many aspects of artificial intelligence [1] because of their excellent ability of self-learning and self-

adapting, they have been successfully. They are often found to be more active and precise than other 

classification techniques [2]. Although several different ways have been suggested, the feed forward neural 

networks (FNNs) are the most familiar and widely used in different kinds of applications. 

The multilayer feed forward neural networks (FNNs) are parallel computational models comprised of densely 

interconnected, adaptive processing units, characterized by an inherent propensity for learning from 

experience and also discovering new knowledge. Due to their excellent capability of self-learning and self-

adapting, they have been successfully applied in many areas of artificial intelligence [3] and are often found to 

be more efficient. The operation of a FNN is depend on the below equations: 

    
  ∑    

       
      

          
    
     

        
                                                  (1) 

where     
  is the sum of its weighted inputs for the     node in the     layer                    

      are the 

weights from the      neuron at the     ) layer to the     neuron at the     layer,   
  is the bias of the     neuron at 

the      layer,   
  is the output of the     neuron that belongs to the     layer, and       

   is the      neuron 

activation function. 

The main idea of training a neural network is can be formulated as a problem of nonlinear unconstrained 

optimization. The training a neural network is to iteratively amend its weights, in order to globally minimize a 

measure of difference between the actual output of the network and the desired output for all examples of the 

training set [4]. Therefore, mathematically the training process can be formulated as the minimization of the 

error function     , defined by the sum of square differences between the actual output of the FNN, namely, 

https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Synapse
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where      is the vector network weights and the number of patterns used in the training set represented by 

 . [5]-[6]. 

The Quasi-Newton methods revolutionized non-linear optimization in the 1960 because they avoid costly 

computations of Hessian matrices and perform well in practice. Several kinds of them have been proposed, but 

since 1970's the BFGS method has become more and more popular, and today it is accepted as the best QN 

method. 

The (QN) methods also known as variable metric methods, provide an important family of widely applicable 

methods for solving smooth unconstrained problems. To minimize a function  

                 ,                                                                      (3) 

where        is a twice continuously differentiable objective function and   is an  -dimensional vector 

space. These algorithms defined 

                                                                                    (4) 

where    is the    approximation to the minimum point,    is the gradient of   at   ,    is an n ×n matrix that 

approximates the inverse Hessian of   at    and    is a positive step size parameter whose value is selected 

according to a rule which depends on the specific method. The approximation    is based on information about 

the inverse Hessian that is deduced from observations of previous gradients. This approximation is usually 

updated after each repetition.  

Davidon [7] proposed the first quasi-Newton approach of this type. This technique, known as the SR1 

algorithm, uses a symmetric    and a line search to choose    in order to minimize   along the line          . 

The required QN algorithm has three key characteristics: 1- each   matrix is positive definite; 2- the directions 

of search are identical to those of the CG method for quadratic problems if      (Fletcher and Reeves [8]); and 

3- once more for a quadratic problem, the kth approximation   is identically equal to the inverse Hessian. It is 

believed that these three characteristics underpin the successful convergence characteristics the approach 

frequently exhibits. 

Many contributions are taken into consideration when deriving new updating formulae possessing some or all 

of the three properties of the algorithm mentioned above, see [9]. 

At each iteration, the new approximation      is selected to take account for the new curvature information 

which is done by satisfying the quasi-Newton condition (          ). The quasi-Newton condition can be 

satisfied by an endless number of rank-two updates. The modifications to the Broyden (1970) one-parameter 

class are now being taken into consideration. The matrix      is defined by  
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where 
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)                                                                                        (5b) 

Different choices of the scalar parameter    define different updates. This class is known as the Broyden class 

[10] or as the one-parameter family of updates [11]. It is also referred to as the Broyden family in [12] and [13]. 

It is easy to verify that any update from this class satisfies the quasi-Newton condition. Moreover, if    is 

symmetric (like the actual inverse Hessian matrix),       will also be symmetric; this property is called 

hereditary symmetry. The symmetric rank one (SR1) update method belongs to the Broyden family, is provided 

by the formula 

          , 

where    
                  

 

  
          

 and it is called the correction matrix. 

It was originally discovered by Davidon [14], according to [15]. One fact about SR1 is that even if    is positive 

definite matrix, the update matrix      may not have this property. The possibility of steps when no update 

satisfies the secant condition is a serious drawback. As long as the denominator is different from zero the 

method proceeds with a unique rank-one update. If      =    the only update that satisfies the secant condition 
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is     , such that the same    matrix can be used for another iteration. The failure occurs when      =    

and   
             at the same iteration. 

II. DERIVATION OF THE MODIFIED SR1 METHOD 

In this fragment we will focus on deriving the modified SR1 algorithm for the unconstrained optimization. The 

step length of the Barzilai-Borwein is defined as    
   

  
   

  
   

 , for more details see [16]. Now, by suppose that 

the Quasi-Newton equations is defined as the following formula: 

    
      

                                                                        (6) 

In the SR1 formula, the correction term is symmetric and has the form       
 where           and 

       . Therefore, the update equation is 

    
       

           
                                                                            (7) 

Our goal now is to determine    and    by multiplying both side of above equation by   
  and by using equation 

(6) we get to 

    
     

      
      

         
   

      

Since   
   

  is scalar. So, we have  

      
      

       
   

                                                           (8) 

and hence    
      

      
 

    
   

  . So,  

      
  

       
      

         
      

   

     
   

   
                                                           (9) 

Now multiply (8) by   
   we obtained   

    
          

        
   

    
      

 Observe that    is scalar and   
       

   
  , then the above equation becomes 

  
          

        
   

                                                                             (10) 

By putting equation (10) in equation (9) we have, 

      
  

       
      

         
      

   

  
         

      
  

                                                                               (11) 

Then 

    
       

     
       

      
         

      
   

  
         

      
  

                                          (12) 

This is the new SR1 update matrix. The SR1 algorithm with PCG method is shown below. 

III. ALGORITHM OF THE NEW SR1 WITH PCG METHOD 

Step 1: Set      , select   ,       and        . 

Step 2: Calculate the gradient    . 

Step 3: Compute         . 

Step 4: Determine      by line search which satisfies the strong Wolfe condition.  

Step 5:                

Step 6: Compute        if ‖    ‖   , then stop. 

             Else    Go to Step (7).  

Step 7: Calculate update     
    using (12). 

Step 8: Compute the direction                
        

  
      

       

  
   

    

Step 9: If |  
     |     ‖    ‖

  go to step (3). 

             Else    Set           and repeat from Step (4). 

Theorem 1: If the new SR1 method in (12) is applied to the quadratic with Hessian     , then  

                          
     

        .  
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Proof: Multiplying both sides of equation      by   
  from the right, we have: 

    
     

     
      

  
       

      
         

      
     

 

  
         

      
  

.       

Since        
      

     
  and also   

         
      

   are scalars. 

So, we have      
     

     
      

        
      

  . 

Then,     
     

    .   

  Hence, the proof is complete.              

Theorem 2: If   
    is positive definite matrix, then the    

     which is generated by equation (12) is also 

positive definite matrix. 

Proof: Multiplying both sides of (2.8) by   
  from the right and by   

   from the left, we get 

  
      

     
    

     
      

  
  
         

      
         

      
     

 

  
         

      
  

  

After simplifying using algebraic operations, we get 

  
      

     
    

      . 

This completes the proof. 

IV. NUMERICAL RESULTS 

Numerical Results for Non-Linear Optimization Problems 

This section is to evaluate how well the updated SR1 method with PCG method has been implemented. On a 

concatenation of test problems for unconstrained nonlinear optimization derived several computational 

experiments are conducted. All programs are written in the FORTRAN95 language to demonstrate the usage 

and effectiveness of the suggested approach with various dimensions  

Table 1 compares the performance of the new SR1 approach and the original SR1 method using NI and NF. The 

modified SR1 technique with the precondition CG method's rate of improvement is shown in Table 2. 

Table 1: Comparison between the SR1 and the new SR1 methods. 

Test Function   
SR1 New SR1 

NI NF NI NF 

G-Cantrel 

4 

10 

50 

100 

500 

1000 

5000 

36 

36 

43 

43 

60 

60 

72 

253 

235 

331 

331 

496 

554 

616 

17 

16 

17 

22 

33 

35 

50 

80 

70 

96 

122 

228 

183 

168 

Cubic 

4 

10 

50 

100 

500 

1000 

5000 

15 

15 

14 

16 

17 

16 

16 

48 

48 

48 

61 

56 

50 

178 

12 

12 

12 

13 

13 

13 

13 

35 

35 

35 

37 

37 

37 

37 

Beal 

4 

10 

50 

100 

11 

1 

12 

12 

29 

29 

31 

31 

11 

11 

12 

12 

27 

27 

29 

29 
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Table 2: Relative efficiency between SR1 and the new SR1with PCG methods 

Tools SR1 New SR1 

NI 100% 80 % 

NF 100% 54.149 % 

This table demonstrates that the proposed strategy improves NI by 20% and NF by 45.850%. In comparison to 

the normal SR1 approach, the modified SR1 method has generally improved by 32.925%.  

Applications Of New SR1 Method for Training Neural Networks 

In this section, the new quasi-newton and standard SR1 algorithm are compared where the input p = [0.1 0.1], 

and target t = [1 1]. The target error has been set to 0.01 and the maximum epochs to 3000. The network is 

trained until the mean squares of the errors are below the error target to decreasing value the error’s function. 

We use the same initial weights in testing all algorithms, that were initialized randomly from range (0, 1) where 

the problems. The results of the training methods are present in the below figures 1and 2. 

 

 

 

 

 

 

500 

1000 

5000 

12 

12 

12 

31 

31 

31 

12 

12 

12 

29 

29 

29 

Powell 

4 

10 

50 

100 

500 

1000 

5000 

30 

30 

31 

32 

33 

33 

33 

80 

93 

95 

97 

97 

97 

97 

28 

30 

30 

30 

30 

30 

30 

81 

84 

84 

84 

84 

84 

84 

G-Wolfe 

4 

10 

50 

100 

500 

1000 

5000 

11 

25 

42 

44 

47 

50 

106 

24 

51 

85 

89 

95 

101 

294 

10 

25 

25 

44 

47 

47 

100 

20 

50 

50 

89 

95 

95 

220 

G-Wood 

4 

10 

50 

100 

500 

1000 

5000 

20 

22 

23 

23 

23 

23 

23 

50 

54 

57 

57 

57 

57 

57 

16 

16 

16 

16 

16 

21 

21 

40 

40 

40 

40 

4 

52 

52 

Total 1235 5302 988 2871 
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Figure 1: Performance of standard SR1 algorithm for training neural networks 

 

Figure 2: Performance of New SR1 algorithm for training neural networks 

V. CONCLUSION 

In this paper, A modification of Quasi-Newton SR1 method depend on the Barzilai-Borwein step size is 

suggested. The proof of its positive definiteness and the QN-condition (or the secant equation) have been 

proved. Our numerical results indicate that there are improvements of proposed new method techniques over 

standard SR1 method. Finally, the practical applicability of the new method is also explored for training neural 

networks. 
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