HOAX DETECTION USING MACHINE LEARNING MODELS

Mrs. K. Tejaswi*1, Tellakula Jahnavi*2, Vicharapu Sushmasri*3, Vusthela Kavayasri**4, Shaik Nagurbi*5

*1Assistant Professor, Department Of Information Technology, KKR & KSR Institute Of Technology And Sciences, Vinjamurampadu, Guntur, Andhra Pradesh, India.
*2Co-Founder, MAKE SKILLED, Hyderabad, Telangana, India.
*3,4,5Student, Department Of Information Technology, KKR & KSR Institute Of Technology And Sciences, Vinjamurampadu, Guntur, Andhra Pradesh, India.

DOI: https://www.doi.org/10.56726/IRJMETS51618

ABSTRACT

The proliferation of misinformation and fake news poses a significant challenge to the integrity of information dissemination in the digital age. This abstract presents an overview of the methodologies and advancements in the field of fake news detection leveraging machine learning models. The existing system rely on manual fact-checking processes or basic rule-based algorithms. With the rapid spread of misinformation, there is a critical need for automated systems that leverage machine learning to efficiently analyze vast amounts of textual data and make accurate predictions about the authenticity of news articles.

This research proposes an integrated approach leveraging natural language processing (NLP) and continuous learning mechanisms to enhance the accuracy and adaptability of detection models. By harnessing sentiment analysis and feature engineering techniques Integration with news aggregation platforms further augments the system’s real-time monitoring capabilities. Powered by Python and supported by machine learning libraries such as Scikit-learn, TensorFlow learning techniques offer a promising avenue for automating this process, leveraging vast datasets of labeled examples to train predictive models. The system adapts to evolving misinformation tactics through continuous learning and updates, ensuring its effectiveness in dynamically changing online environments.

Keywords: Fake News Detection, Machine Learning Models, Natural Language Processing (NLP), Continuous Learning Mechanisms, Sentiment Analysis, Python, TensorFlow, Robust Machine Learning Models.

I. INTRODUCTION

The challenge of discerning truth from falsehood has become increasingly complex. Misinformation, disinformation, and fake news pose significant threats to the integrity of information circulating through various channels. As society relies heavily on news and information to make informed decisions, the need for a robust system to distinguish between reliable and deceptive content has never been more critical. The project titled “Hoax detection” addresses this pressing issue by leveraging the power of machine learning to develop an intelligent system capable of identifying and categorizing fake news. Through a combination of advanced algorithms and data analysis, Hoax detection aims to contribute to the ongoing efforts to safeguard the authenticity of information available to the public.

II. LITERATURE REVIEW

- The complexity of the fake news problem stressing its social and economic consequences, including damage to trust, credibility, and brand reputation. The study focuses on fake news detection using machine learning. It employs a feature set capturing article structure, readability, and title-body similarity. The experiment tests six algorithms: AdaBoost (AB), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Performance evaluation utilizes the confusion matrix and other metrics, revealing Support Vector Machine as the most effective classifier for the experiment.
- The task of determining the authenticity of news articles, distinguishing between true and fake content. The findings indicate that logistic regression, in conjunction with the TF-IDF (term frequency-inverse document frequency) feature extraction method, achieves the highest accuracy at 71%. This algorithm and feature extraction combination are identified as the most effective for the task of discerning between true and fake news articles.
Fake news detection, aiming to establish a social context for news objects on social media. Unlike the prevalent content-based detection utilizing machine learning and NLP, the context-based approach has been underexplored. The paper highlights the need to integrate technologies for more robust context-based fake news detection.

The growing trend of smartphone users relying on social media for news consumption and highlights the challenge of authenticating news circulated through platforms like WhatsApp, Facebook, Twitter, and other microblogs. The urgency to distinguish between authentic and false news. The paper presents a model and methodology for detecting fake news, leveraging Machine Learning and Natural Language Processing techniques. The results of the model demonstrate a high accuracy level of up to 93.6%, surpassing existing models in fake news detection.

The impact of technological advances on internet accessibility and acknowledges the misuse of online platforms, particularly in the widespread dissemination of fake news for various purposes. Detecting fake news remains a challenging task for traditional content-based analysis methods. The proposed solution involves a bidirectional LSTM concatenated model, demonstrating its efficacy on the FNC-1 dataset with an accuracy of 85.3%.

Yellow journalism is prevalent due to increased internet and social media use, making people susceptible to fake news. To exploit clickbait for popularity and profit, publishers circulate deceptive content. Falsified news has become a global issue. While existing systems classify fake news in English, this work focuses on Bengali news in the South Asian context, where over 200 million people communicate in Bengali. The classification system, utilizing a data mining algorithm, achieves 85% accuracy with a random forest classifier. A web interface is introduced for users to verify the authenticity of Bengali news articles.

III. METHODOLOGY

This technical paper details the implementation of Hoax Detection based on Machine Learning. On social networks, several excellent works and resources support text mining. The available libraries were implemented during this project.

We can perform different methods for given data to find real and fake news in the given dataset. Here we can use different libraries and different Natural learning techniques to check the syntax and semantic analysis for the text.

We use different methods used for distinguish between fake and real news.

- In this project, we've used the dataset of shape 6335 x 4 consists of different data of fake and real news collected from different news articles
- After that we can perform preprocessing and cleaning of dataset to check the text form and it is in correct syntax or not
- The next step is to extract relevant features from the text data. This can include traditional NLP (Natural language processing) features like word embeddings and syntactic features. We also use NLTK (Natural language tool kit) which is an open-source library of NLP.
- Coming to model selection here we choose appropriate machine learning model for the classification task. The model we use is Multinomial Naive Bayes Model to predict whether given entered news is correct or not.
- After we Split the dataset into training and testing sets. And we train the selected models on the training data.
- In next step we evaluate the trained models on the testing set using metrics such as accuracy, precision to assess their performance in distinguishing between fake and real news.

These are different methods used to get the accuracy of the news. In the dataset we can also work in EDA (Exploratory Data Analysis) part of it to understand the data.

Exploratory Data Analysis (EDA) is an approach of analyzing datasets to summarize their main characteristics, often using statistical graphics and other data visualization methods.
IV. MODELING AND ANALYSIS

Machine learning can be a powerful tool for detecting fake news. By analyzing vast amounts of text data, algorithms can identify patterns in writing style and sources that are commonly associated with fake news. These models are trained on datasets labeled as real or fake news, allowing them to learn and apply these patterns to new information. This approach can be particularly useful for sifting through large volumes of content on social media, where false information often spreads rapidly.

However, it's important to remember that machine learning models are only as good as the data they're trained on, and continual improvement requires diverse datasets and ongoing analysis.

The model we use is Multinomial Naïve Bayes Model (MNB) to predict whether given entered news is correct or not. Imagine a massive dataset of news articles categorized as real or fake. The MNB model examines this data, accurately counting how often each word appears in real and fake news articles.

When presented with a new article, the MNB model analyzes the word frequencies and compares them to the fingerprints of real and fake news. It calculates the probability of the article belonging to each category based on the individual word probabilities. By applying Bayes' theorem, the model assigns the article to the category with the higher overall probability.

MNB is a relatively simple algorithm, making it fast to train and implement. This is crucial for real-time analysis of large amounts of news content.

Unlike some complex models, MNB allows us to understand why an article is classified as fake news. We can see which words hold the most weight in the classification, providing valuable understandings into the language patterns used in fake news.

Mainly by using MNB models we analyze that by taking different datasets of news articles we get the accurate information whether the news article is fake or real.

V. RESULTS AND DISCUSSION

After performing different methods on the given dataset and train the machine with the selected model with the dataset we presented we have to test the machine learning model by give the input data to it from the dataset it trained which also called as user query. From this it can give either the news is real or fake.

The dataset can be split into training and test data. Mainly the machine learning model can be trained with the 80% of the dataset with the selected model to predict and the machine learning model predicts the other 20% of data as data testing to see how our model work.

We've used the dataset of shape 6335 x 4 consists of different data of fake and real news collected from different news articles.
After taking the dataset we can perform different methods on the dataset. Hoax detection using machine learning typically involves techniques such as supervised learning with features extracted from text, including bag-of-words or TF-IDF representations. We can see the result as follows:

Figure 2: Dataset

Figure 3: Detecting real news

Figure 4: Detecting fake news

VI. CONCLUSION

Machine learning is a technology that allows you to create intelligent models, which are much more convenient than the traditional physical models. Our results show that these machine learning models can predict whether
patterns that are accurate enough to compete with the traditional ones. Today’s world is using different social media we don’t know whether the data or the news we see is correct or not. By using traditional physical models we can’t fully find the correct news. And main aim of using machine learning models to find either the news is real or fake.

VII. REFERENCES