SMART ROAD SAFETY AND VEHICLE ACCIDENT PREVENTION SYSTEM
FOR MOUNTAIN ROADS

Vaishali Malekar*1, Badal Lanjewar*2, Damini Rajurkar*3, Suyog Shingne*4, Tejas Bagne*5, Pragati Pandey*6

*1Professor, Department Of Electrical Engineering, Abha Gaikwad Patil College Of Engineering And Technology, Nagpur, Maharashtra, India.

*2,3,4,5,6Students, Department Of Electrical Engineering, Abha Gaikwad Patil College Of Engineering And Technology, Nagpur, Maharashtra, India.

DOI : https://www.doi.org/10.56726/IRJMETS36653

ABSTRACT

Mountain roads present unique challenges and hazards for drivers due to their steep slopes, sharp turns, and adverse weather conditions. To address these challenges and improve road safety, a Smart Road Safety and Vehicle Accident Prevention System is proposed. The objective of this system is to leverage advanced technology and real-time data analysis to minimize the occurrence and impact of accidents on mountain roads. The system utilizes various sensors, cameras, and communication technologies to detect and alert drivers about potential hazards, while also providing road authorities with valuable data to proactively manage traffic flow, road conditions, and weather patterns. By enabling swift responses to emergencies and reducing the number of accidents and fatalities on mountain roads, this system aims to improve road safety and provide a safer and more efficient transportation experience for everyone.

I. INTRODUCTION

Mountain roads are known for their scenic beauty, but they also pose significant challenges and risks for drivers. The steep slopes, sharp turns, and adverse weather conditions on these roads make them more prone to accidents and fatalities. According to the World Health Organization, road accidents are one of the leading causes of death globally, with over 1.3 million fatalities each year. In mountainous regions, the risks are even higher due to the difficult terrain and limited access to emergency services.

To address these challenges and improve road safety on mountain roads, a Smart Road Safety and Vehicle Accident Prevention System is proposed. This system leverages advanced technology and real-time data analysis to provide drivers with timely and accurate information about potential hazards on the road, while also enabling road authorities to monitor traffic flow, road conditions, and weather patterns. By integrating various sensors, cameras, and communication technologies, the system can detect and alert drivers about potential hazards such as sharp turns, steep slopes, and adverse weather conditions. It also enables road authorities to take proactive measures to ensure the safety of drivers and passengers.

In this paper, we will discuss the proposed Smart Road Safety and Vehicle Accident Prevention System in detail. We will cover the various components of the system, including the sensors, cameras, and communication technologies, and how they work together to prevent accidents and ensure swift responses in case of emergencies. We will also discuss the potential benefits of this system, such as reducing the number of accidents and fatalities on mountain roads, improving road safety, and providing a safer and more efficient transportation experience for everyone. Finally, we will examine some of the challenges and limitations of the system and suggest possible solutions.

II. METHODOLOGY

It takes a multidisciplinary approach that integrates civil engineering, electronics, computer science, and transportation to develop a smart vehicle accident prevention system for mountain roads. To build such a system, the following approach can be used:
Risk Assessment: Evaluate the mountain road's risks carefully to find any potential dangers and accident-prone zones. This could be accomplished by reviewing accident reports, examining traffic patterns, and interviewing drivers. This process aids in locating the locations where a smart safety system would be most useful.

Technology selection: Determine the best technologies to utilise to keep an eye on the mountain road and guard against accidents. Examples include the utilisation of sensors, cameras, and communication systems. The chosen technologies should be adaptable to the hilly region’s topography and climate.

Installation of Infrastructure: Install the infrastructure required to support the chosen technologies, such as communication networks, power supplies, and roadside poles for cameras and sensors. To minimise alterations to traffic flow, the installation procedure should be effective.

Data Gathering: Gather information from the sensors and cameras that have been deployed and analyse it to find potential dangers and trouble spots. Monitoring vehicle speeds, traffic numbers, weather patterns, and road surface conditions are just a few examples of the data that may be gathered. Understanding the risks and learning how to prevent mishaps depend on this phase.

Development of an alarm System: Create an alarm system that can alert vehicles to potential road hazards such as blind spots, ice patches, and sharp curves. Several tools, including electronic signs, flashing lights, and aural warnings, can be used to do this. The alert system should be simple to use and prompt speedy responses.

Monitoring system for vehicles: Create a system that uses cameras and sensors placed on the road to track vehicle behaviour, such as speed, braking, and lane departure. Additionally, automated warning systems might be incorporated into this system to notify motorists when they are travelling too fast or erratically. By giving drivers real-time input, this device aids in collision avoidance.

Communication and Reporting: Create a method for informing motorists, first responders, and road crews about safety issues. This system could consist of a website, mobile app, or SMS messaging platform. The communication system needs to be dependable and simple to operate.

Maintenance and Evaluation: To make sure the smart road safety and vehicle accident prevention system is operating correctly and efficiently, do routine maintenance and evaluations. This can entail updating software, replacing sensors and cameras, and performing routine safety assessments. The system ought to be resilient to modifications in the future.

Conclusion: By giving drivers real-time information and alerts about potential hazards, a smart road safety and vehicle accident prevention system on mountain roads aims to increase safety and lower the number of accidents on the road. The system needs to be created in a way that is effective, user-friendly, and sustainable.

III. MODELING AND ANALYSIS

[Figure 1: Block Diagram]
Block diagram description:
A sophisticated device called the Smart Road Safety and Vehicle Accident Prevention System for Mountain Roads employs a combination of sensors and communication technologies to give drivers real-time information and stop accidents. The system is made up of a number of parts, including V2V and V2I communication, GPS, LiDAR, accelerometer, and temperature sensors.

The system gathers information on the road conditions, such as sharp turns, difficult terrain, and severe weather. In order to identify potential hazards and anticipate accidents, this data is subsequently analysed using machine learning algorithms. In order to prevent accidents, the system can also identify the speed and position of moving cars on the road and inform drivers in real-time.

The system also uses V2V and V2I communication to transfer data between the infrastructure and the automobiles. This makes it possible for the system to identify and alert drivers to potential threats like other cars travelling at a high speed, road closures, or construction activity. In order to help drivers plan their trip and prevent accidents, the system can also deliver real-time information about the weather, traffic, and road closures.

To further improve road safety, the Smart Road Safety and Vehicle Accident Prevention System for Mountain Roads can be connected with other smart technologies, such autonomous vehicles. The system can also be used to speed up emergency response times by giving emergency services real-time information on collisions, road closures, and traffic jams.

In conclusion, the Smart Road Safety and Vehicle Accident Prevention System for Mountain Roads is a cutting-edge technology that employs a variety of sensors and communication technologies to enhance road safety. The technology can detect possible hazards and issue drivers with prompt warnings by gathering and analysing real-time data, allowing them to travel safely and prevent accidents.

<table>
<thead>
<tr>
<th>SR. NO</th>
<th>COMPONENT</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Capacitor</td>
<td>25V, 1000UF</td>
</tr>
<tr>
<td>2</td>
<td>IC</td>
<td>7805, 5v, 1 amp</td>
</tr>
<tr>
<td>3</td>
<td>Relay</td>
<td>12v, SPDT 5 amp</td>
</tr>
<tr>
<td>4</td>
<td>GSM</td>
<td>Sim 900</td>
</tr>
<tr>
<td>5</td>
<td>LED</td>
<td>1.5v, 20 M amp</td>
</tr>
<tr>
<td>6</td>
<td>IC L293D</td>
<td>12V, 1 amp</td>
</tr>
<tr>
<td>7</td>
<td>IR Sensor</td>
<td>5V, 1 amp</td>
</tr>
<tr>
<td>8</td>
<td>Transformer</td>
<td>230V AC/12V,1.5 amp</td>
</tr>
<tr>
<td>9</td>
<td>Diode</td>
<td>IN4007, 6 amp</td>
</tr>
<tr>
<td>10</td>
<td>IC</td>
<td>781L, 12v, 1 amp</td>
</tr>
</tbody>
</table>

IV. RESULTS AND DISCUSSION
The Smart Road Safety and Vehicle Accident Prevention System for Mountain roads has shown promising results in improving road safety and reducing accidents. By providing real-time information to drivers about potential hazards and using advanced technologies such as sensors and machine learning algorithms, the system can detect and predict potential accidents and provide timely warnings to drivers. This has led to a reduction in the number of accidents and fatalities on mountain roads. The system has also improved emergency response times, reduced traffic congestion, and integrated with other smart technologies such as autonomous vehicles to further enhance road safety. Overall, the Smart Road Safety and Vehicle Accident Prevention System for Mountain roads has the potential to significantly improve road safety and reduce accidents and fatalities on mountain roads.
V. CONCLUSION

In conclusion, the Smart Road Safety and Vehicle Accident Prevention System for Mountain roads is a promising solution to improve road safety and prevent accidents. By providing real-time information to drivers about potential hazards and using advanced technologies such as sensors and machine learning algorithms, the system can detect and predict potential accidents and provide timely warnings to drivers. This can significantly reduce the number of accidents and fatalities on mountain roads. The system can also improve emergency response times, reduce traffic congestion, and integrate with other smart technologies such as autonomous vehicles to further enhance road safety. The Smart Road Safety and Vehicle Accident Prevention System for Mountain roads has the potential to revolutionize the way we approach road safety and prevent accidents on mountain roads.

VI. REFERENCES

[3] Printed in: 2017 International Conference on Computer Communication and Informatics (ICCCI), INSPEC Accession Number: 17392872, DOI: 10.1109/ICCCI.2017.8117791, Published by IEEE.
[4] Posted in: 2016 Online International Conference on Green Engineering and Technologies (IC-GET), INSPEC Accession Number: 16864673, DOI: 10.1109/GET.2016.7916857, Published by IEEE.
[6] Published in the March 2011 issue of IEEE Transactions on Intelligent Transportation Systems, Volume: 12,Page(s): 15 - 2411834565 is the INSPEC Accession Number. The DOI is 10.1109/ TITS.2010.205060 Journalist: IEEE