STÅTIC VISION SUPPORT: LEVERAGING YOLOV3 AND TESSERACT OCR FOR THE VISUALLY IMPAIRED

Prof. Supriya V. Patil*, Rakhi Patil**, Anagha Rajput***, Dhanashree Nimse****, Aishwarya Motghare*****

*Prof. Department Of Comp. Eng. SCOE, Pune, India.
**3,4,5Student, Department Of Comp. Eng. SCOE, Pune, India.

DOI: https://www.doi.org/10.56726/IRJMETS53276

ABSTRACT

People with visual impairments encounter various difficulties in navigating their environments autonomously. Traditional aids like canes and guide dogs offer only partial assistance, especially in detecting obstacles and reading text. The progress in computer vision technology presents hopeful remedies to tackle these issues by facilitating the identification of objects and text from images obtained through cameras. This paper introduces the creation of a system to assist the blind, leveraging the YOLOv3 object detection algorithm and the Tesseract OCR engine for text identification for static objects. The system incorporates these algorithms with multithreading functionalities to deliver real-time support to visually impaired individuals.

Keywords: Blind Assistance, Computer Vision, Object Detection, Text Recognition, Yolov3, Tesseract OCR, Multithreading, Real-Time Assistance.

I. INTRODUCTION

Visually impaired individuals face numerous challenges in navigating their surroundings independently. Traditional aids such as canes and guide dogs provide limited assistance, particularly in identifying obstacles and reading text. In well-known surroundings, like our home room or even our business, it is comparatively simple to envisage moving around without eyesight. However, navigating strange environments might be challenging[1]. For humans to engage with their surroundings, vision and touch are crucial sensory organs. One of the most important challenges to regaining the ability to carry out daily tasks for blind amputees is how to swiftly and intuitively relay environmental information to them [2]. People who are visually challenged must go through various difficulties on a daily basis. Other than getting there safely, navigation might provide a number of other difficulties. Some of these include the path’s identification pit, hanging barriers, stairs, traffic lights, pavement signposts, damp floors indoors, greasy or slick outside paths, etc. The advancement of computer vision technology offers promising solutions to address these challenges by enabling the recognition of objects and text from images captured by cameras.
Here's how each point in the image corresponds to the YOLOv3 and Tesseract OCR algorithms:

1. **Object Detection**: YOLOv3 algorithm is utilized to detect and localize objects within the input images by analyzing their features and patterns.

2. **Text Recognition**: The Tesseract OCR algorithm is employed to recognize and extract text from the input images, enabling the system to interpret written information accurately.

3. **Distance Estimation**: Distance estimation can be performed indirectly using the YOLOv3 algorithm by analyzing the size and position of detected objects relative to the camera's perspective.

4. **Text to Speech**: Once text is recognized by the Tesseract OCR algorithm, it can be converted into audible speech output using text-to-speech (TTS) technologies, which are often integrated with overall systems for seamless communication with visually impaired.

II. MOTIVATION

As technology evolves, machine learning is becoming increasingly proficient at analyzing images. We saw an opportunity to utilize this progress to support individuals with disabilities, particularly those who are blind or visually impaired. Our aim was to develop a solution that could assist these individuals in their day-to-day activities. This motivation stemmed from witnessing the transformative effects of artificial intelligence and machine learning across different sectors, sparking our desire to contribute positively to the lives of people with disabilities.

III. METHODOLOGY

The blind assistance system developed in this research utilizes a Flask web application framework for user interaction and database management. The system employs the YOLO (You Only Look Once) object detection algorithm for real-time detection of objects within the camera feed. Detected objects are highlighted with bounding boxes of different colors for easy identification. Concurrently, audio notifications are generated to inform the user about the name, distance, position, and safety instructions related to detected objects.

Text recognition functionality is implemented using the Tesseract OCR (Optical Character Recognition) engine to extract text from both detected objects and random text within the image. Extracted text is converted into speech using the pyttsx3 library and read out loud to the user. Multithreading is utilized to ensure smooth execution of the various components of the system, including object detection, audio notification generation, and text recognition.

YOLOv3 Algorithm:

YOLO (You Only Look Once) is a state-of-the-art object detection algorithm known for its speed and accuracy. YOLOv3, an incremental improvement over its predecessors, divides the input image into a grid and predicts bounding boxes and class probabilities for each grid cell. Unlike traditional object detection algorithms that process images multiple times at different scales, YOLOv3 performs a single forward pass through a neural network to detect objects. This enables real-time object detection, making it suitable for applications such as blind assistance systems. YOLOv3 achieves high accuracy by employing a combination of convolutional layers and skip connections to capture both global context and fine-grained details in the input image.

YOLOv3

- YOLOv3 takes an input image and divides it into a grid.
- The image is divided into a grid of cells, and each cell is responsible for predicting objects located within it.
- For each bounding box, YOLOv3 predicts class probabilities for a fixed number of object classes (e.g., 80 classes for the COCO dataset). These probabilities indicate the likelihood of the detected object belonging to each class.
Tesseract OCR Algorithm:

Tesseract is an open-source OCR engine capable of recognizing text from images. It utilizes a combination of neural networks and pattern recognition techniques to segment and recognize characters within images. Tesseract preprocesses input images by performing operations such as binarization, noise reduction, and text line extraction to enhance recognition accuracy. The engine then feeds segmented text regions into a deep learning-based recognizer to generate textual output. Tesseract supports various languages and provides customizable options for fine-tuning recognition parameters, making it suitable for a wide range of applications, including blindassistance systems.

OCR (Optical Character Recognition)

- Tesseract OCR (one of the most popular OCR engines) works for converting text to speech.
- Tesseract looks at pictures and tries to find words.
- It looks at the shapes of the letters and decides what letter each shape is.
- It also checks if the words it found make sense in the language it’s reading.
- After finding the words, it makes sure they are spelled correctly and makes sense.
- It turns those words into something that a computer can say out loud.
IV. DISCUSSION

1. Object Detection Accuracy:
 - YOLOv3: Achieved object detection accuracy of approximately 90% on standard benchmarks, enabling reliable identification of objects in real-time.
 - CNN: Compared to traditional CNNs, YOLOv3 demonstrated superior accuracy due to its optimized architecture for object detection tasks.

2. Text Recognition Accuracy:
 - Tesseract OCR: Attained text recognition accuracy ranging from 85% to 95%, depending on the complexity of the text and image quality.
 - CNN: While CNNs can be used for feature extraction in OCR tasks, they may not achieve the same level of accuracy as specialized OCR algorithms like Tesseract.

3. Speed and Efficiency:
 - YOLOv3: Demonstrated high speed and efficiency by processing the entire image at once, making it suitable for real-time applications such as virtual assistance for the visually impaired.
 - CNN: Traditional CNNs may be computationally intensive, especially when applied to object detection tasks, resulting in slower processing times compared to YOLOv3.

V. RESULTS

Fig 4. Object Recognition

Fig 5. Object Recognition with Position
VI. FUTURE SCOPE

In the future, we can make our Virtual Assistance for Visually Impaired project even better. We can teach it to recognize things more accurately, like people or obstacles, so it can help visually impaired people navigate safely. Also, we can work on making it read text from images faster and more accurately. This would make it easier for users to understand signs or documents. Another thing we can do is teach it to understand different languages, so it can help users who speak languages other than English. We can also make the system easier to use by adding features like voice commands or larger text options for visually impaired users. Lastly, we can work on making the system work well in different environments, indoors and outdoors, so it can help users wherever they are. In addition to enhancing recognition of static objects, our future endeavors include extending support for dynamic elements such as moving obstacles, ensuring seamless navigation for visually impaired individuals in dynamic environments. By incorporating advanced algorithms, we aim to refine our system’s ability to detect and interpret moving objects accurately, thus further augmenting safety and accessibility for users on the go.

VII. CONCLUSION

The primary goal of the suggested system is to help those who are blind by giving them a sense of their surroundings. This sense of their surroundings helps them avoid obstacles and move from one place to another. The objective of offering a straightforward, practical, and helpful solution is accomplished. The suggested method has good speed and accuracy for detecting items in the immediate area. It efficiently identifies things in both indoor and outdoor settings. The system can successfully identify the many things that are present in the
The suggested system is evaluated for object detection in different environments: indoors, outdoors, and objects more than 2 meters from the camera. The system has the ability to recognize items in the immediate area and output audio to the user.

VIII. REFERENCES