GENOMIC DISEASE DIAGNOSIS USING SUPPORT VECTOR MACHINES

Pauline Persia1, Vijayaraj2, Muthumani3

1Post Graduate Student, Department Of Electronics And Communication Engineering, Government College Of Engineering, Tirunelveli, Tamil Nadu, India.

2,3Professor, Department Of Electronics And Communication Engineering, Government College Of Engineering, Tirunelveli, Tamil Nadu, India.

DOI: https://www.doi.org/10.56726/IRJMETS59109

ABSTRACT

The diagnosis of extrapulmonary tuberculosis (EPTB) presents significant challenges due to its varied manifestations and the limitations of conventional diagnostic methods. This study proposes the use of a Support Vector Machine (SVM) model to classify EPTB using gene expression data obtained from the GSE83456 dataset. By leveraging advanced machine learning techniques, we aim to enhance the accuracy and reliability of EPTB diagnosis. Our model was trained and validated using this dataset, achieving a remarkable accuracy. This paper outlines the methodology, results, and potential implications of using SVM models in the diagnosis of EPTB, highlighting a significant improvement over traditional diagnostic methods.

Keywords: TB-Tuberculosis, EPTB-Extra pulmonary Tuberculosis, HC-Healthy Controls, SVM-Support Vector Machine.

I. INTRODUCTION

Tuberculosis (TB) remains one of the most pressing global health challenges, responsible for significant morbidity and mortality worldwide. Among its various forms, extrapulmonary tuberculosis (EPTB) poses unique diagnostic and therapeutic challenges. Unlike pulmonary tuberculosis, which affects the lungs, EPTB involves organs other than the lungs, such as the lymph nodes, pleura, abdomen, genitourinary tract, skin, joints, and bones. The diverse manifestations of EPTB complicate its diagnosis and often lead to delays in treatment, thereby exacerbating the disease burden. Conventional diagnostic methods for EPTB, including culture techniques, histopathological examination, and radiological assessments, have limitations. Culture techniques, while specific, are time-consuming and often yield results weeks after sample collection. Histopathological examinations require invasive procedures and can sometimes lead to inconclusive results. Radiological methods, although useful, often lack the sensitivity and specificity required for definitive diagnosis. These limitations underscore the need for more reliable, rapid, and non-invasive diagnostic approaches. Recent advancements in molecular biology and bioinformatics have opened new avenues for the diagnosis of infectious diseases. The analysis of gene expression profiles has emerged as a promising tool for understanding the underlying biological processes of diseases and for developing diagnostic biomarkers. In particular, the use of gene expression data to classify diseases has gained traction in the research community. Machine learning (ML) techniques, known for their ability to handle large datasets and identify complex patterns, offer a powerful solution for the analysis of gene expression data. Among various ML algorithms, the Support Vector Machine (SVM) is particularly suited for classification tasks due to its robustness and effectiveness in high-dimensional spaces. SVMs work by finding the optimal hyperplane that separates different classes in the feature space, making them ideal for distinguishing between disease states based on gene expression profiles. In this study, we explore the application of an SVM model for the classification of EPTB using gene 0% Plagiarized Content 100% Page 1 of 2 expression data obtained from the GSE83456 dataset. The dataset comprises gene expression profiles from EPTB and non-EPTB samples, providing a rich source of data for model training and validation. Our objective is to develop an SVM-based diagnostic tool that can accurately classify EPTB, thereby facilitating early and precise diagnosis. The methodology involves several key steps: data preprocessing, feature selection, model training, and validation. Data preprocessing ensures the integrity and quality of the dataset, while feature selection identifies the most relevant genes for classification. The SVM model is then trained on the processed data, with hyperparameters optimized to enhance performance. Finally, the model is validated using a separate subset of the data to evaluate its accuracy and generalizability. The successful implementation of this SVM model has the potential to transform the diagnostic approach for EPTB. By leveraging the power of
machine learning and gene expression analysis, this study aims to provide a more reliable and efficient diagnostic tool that can complement existing methods and improve patient outcomes. The findings of this research could pave the way for the broader application of ML techniques in the diagnosis of other complex diseases, ultimately contributing to the advancement of personalized medicine and healthcare innovation.

II. PROPOSED SYSTEM

This research aims to develop a robust Support Vector Machine (SVM) model for accurately classifying extrapulmonary tuberculosis (EPTB) using gene expression data from the GSE83456 dataset. The project is structured into several key phases to ensure a comprehensive approach to model development and evaluation.

Data Collection and Preprocessing

Data Collection: The GSE83456 dataset, sourced from the Gene Expression Omnibus (GEO) database, includes gene expression profiles annotated with EPTB status, encompassing both training and validation samples.

Data Preprocessing: Key steps include: Data Cleaning: Addressing missing or inconsistent entries and ensuring data integrity by excluding incomplete samples. Normalization: Standardizing gene expression levels across samples to facilitate fair comparisons. Outlier Detection: Identifying and handling outliers to prevent skewed model training.

Feature Selection: Importance of Feature Selection: Given the dataset’s high dimensionality, selecting relevant features is crucial for model performance and interpretability.

Methods for Feature Selection: Statistical Techniques: Utilizing statistical tests like t-tests and ANOVA to identify genes significantly associated with EPTB. Correlation Analysis: Assessing Pearson and Spearman correlations to understand relationships between gene expressions and the target variable.

Machine Learning Methods: Employing techniques such as Recursive Feature Elimination (RFE) within SVM framework to iteratively select informative features.

SVM Model Development

Model Selection: SVMs are chosen for their ability to handle high-dimensional data and their robustness in classification tasks.

Hyperparameter Tuning: Optimizing SVM parameters (e.g., regularization parameter C, kernel parameter gamma) using cross-validation techniques like grid search to enhance model performance.

Training, Validation, and Performance Evaluation

Evaluation Metrics: Assessing model performance using metrics such as accuracy, precision, recall, and F1-score to measure classification effectiveness. Confusion Matrix and ROC Analysis: Utilizing confusion matrices and ROC curves with AUC metrics to evaluate the model’s classification and discrimination capabilities.

Comparison and Integration: Comparison with Baseline Models: Benchmarking SVM performance against alternative models like logistic regression and decision trees to demonstrate superiority in EPTB classification.

Implementation and Integration: Implementing the SVM model in MATLAB for its robust computational capabilities in machine learning and potential integration into clinical decision support systems for enhancing EPTB diagnosis.

III. RESULTS AND DISCUSSION

Precision and Recall

Precision measures the accuracy of positive predictions by evaluating the proportion of correctly identified true positives among all instances predicted as positive. It indicates how well the model performs in avoiding false positives. Recall, on the other hand, assesses the model’s ability to identify all positive instances by measuring the proportion of true positives correctly predicted out of all actual positive instances. It reflects the model’s sensitivity to detect positives.

Confusion Matrix

The confusion matrix provides a detailed breakdown of a model’s predictions, displaying the counts of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). These metrics are crucial for understanding the model’s performance across different classes and evaluating its effectiveness in making accurate predictions.
Receiver Operating Characteristic (ROC) and Area Under the Curve (AUC)

The ROC curve is a graphical representation that illustrates the performance of a model across various thresholds, plotting the true positive rate (sensitivity) against the false positive rate (1-specificity). The Area Under the Curve (AUC) quantifies the overall ability of the model to distinguish between classes. A higher AUC value, closer to 1, indicates superior model performance in classification tasks, where it effectively separates positive and negative instances.

Figure 1. Block diagram

Figure 2: SVM training
This study presents a novel approach to diagnosing extrapulmonary tuberculosis (EPTB) using a Support Vector Machine (SVM) model and gene expression data. The results indicate that the SVM model significantly enhances diagnostic accuracy compared to traditional methods, offering a promising alternative for EPTB diagnosis. The high performance of the SVM model underscores the potential of machine learning techniques in medical diagnostics. Future research should focus on refining the model, exploring its application to other diseases, and integrating it into clinical workflows. This study lays the foundation for the broader application of machine learning models in the field of medical diagnostics, ultimately aiming to improve patient outcomes and healthcare efficiency.

IV. CONCLUSION

REFERENCES

