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ABSTRACT 

A neuro-inspired computing chip emulates the structure and operation of the biological brain and represents 

an innovative and assured approach to the development of intelligent computing[1]. When processing Artificial 

Intelligence workloads, these neuro-inspired computing chips are expected to provide advantages in power 

efficiency and computing power over traditional systems[3]. Over the past few years, a spread of neuro-

inspired computing chips have been developed[11]. Several neuro-inspired innovations have been 

incorporated into these chips at various levels, from the hardware to the circuitry to the architecture[7]. This is  

still at a beginning stage in the development of neuro-inspired computing chips, so exploring the hurdles and 

opportunities for the field is crucial[10]. 

The origins of neuro-inspired computing chips and recent progress in the domain is studied by us[5]. We 

classify four critical metrics for deciding the performance of the fragments: computing density, energy 

efficiency, computing accuracy, and learning capability[8]. We then explore the challenges and co-design 

principles of developing large-scale chips based on non-volatile memory (NVM)[2]. We also address the future 

electronic design automation (EDA) toolchain and propose a technological roadmap to develop large-scale 

neuro-inspired computing chips[1]. 

I. INTRODUCTION 

Human brains are capable of processing extensive amounts of information while consuming little energy. In 

response to a need, the brain turns up computation, but it immediately returns to a baseline. As far as silicon-

based computers are concerned, such efficiencies have never been achieved. Massive amounts of electricity are 

required to process huge amounts of data[4]. 

Deep neural networks (DNNs) and chips have achieved considerable improvements in accuracy on a variety of 

large-scale classification tasks, some even surpassing human performance[6]. Nevertheless, in order to achieve 

better training efficiency, the DNNs model's parameters rise exponentially, resulting in hundreds of millions of 

parameters and large training datasets stored in the memory. In the traditional, von Neumann-based computer 

architecture, the data needs to be moved back and forth between memory, and the processor, resulting in 

limited hardware energy efficiency for these machine learning workloads[14,10,8]. 

The concept of adaptive parallel processing in biological neural networks (BioNNs) using neuro-inspired 

computing is proposed to eliminate the energy-intensive and inefficient transmission of von Neumann-based 

platforms. 

The two main paradigms of neuro-inspired computing are digital-bit-encoded artificial neural networks (ANNs) 

and spike-timing-encoded spiking neural networks (SNNs). Deep neural networks (DNN) and convolutional 

neural networks (CNNs), as well as recurrent neural networks (RNNs), have been successful in logical 

computing, machine vision, intelligent search, and automatic driving.[2,3] 

Algorithms of the brain. Human brains are dynamic, reconfigurable systems composed of neurons that are 

interconnected through synaptic connections[12]. For physicists, it exhibits many fascinating phenomena such 

as energy minimization or entropy minimization, phase transitions, criticality, self-oscillation chaos, 

synchronization, stochastic resonance, and many more[1]. Since the beginning, physicists have participated in 

theoretical efforts to explain the brain's algorithms, making contributions to both the fields of computer science 

and computational neuroscience. Statistical physics, nonlinear dynamics, and complex systems theory helped 
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cast light on neural mechanisms that allow learning. Hopfield networks and Boltzmann machines, which inherit 

from Ising spin systems, are the most famous ones, but many others have been proposed, exploiting, in 

particular, nonlinear dynamics for computing[3,8,10]. 

II. PHYSICS FOR NEUROMORPHIC COMPUTING 

Neuromorphic computing influences the brain to create energy-efficient hardware for information processing, 

capable of highly sophisticated tasks. Systems built with regular electronics obtain gains in pace and energy by 

mimicking the dispersed topology of the brain. Scaling up such arrangements and improving their energy 

usage, performance, and speed by several orders of magnitude requires a revolution of hardware. 

Neuromorphic computing could be greatly enhanced by incorporating more physics in algorithms and 

nanoscale materials. We review impressive results that leverage physics to improve the computing capabilities 

of artificial neural networks, using resistive switching elements, photonics, spintronics, and other technologies. 

We study the pathways that could affect these approaches to maturity towards low-power, miniaturized chips 

that could infer and acquire in real-time. 

 

The performance conditions of NVM devices for neuro-inspired computing chips are largely dependent on 

particular systems and applications. The number of analog states determines the weight tuning precision. It has 

been reported that precision of at least eight equivalent bits is required for training a relatively big neural 

network45, such as ResNet46. 

Current electronics are not enough. In the brain, neurons which can roughly be viewed as performing 

processing -- have straight access to memory, supported by synapses. Current electronics, on the contrary, 

intrinsically separate memory and computing into discrete physical units, between which data must be 

transferred back and forth. This "von Neumann bottleneck" is an issue for artificial intelligence algorithms, 

which require reading substantial amounts of data at every step, performing complex operations on this data, 

and then writing the results back to memory. It slows down computing and considerably enhances the energy 

loss for learning and inference. 

The standard model in neuromorphic computing is, therefore, to take inspiration from the topology of the brain 

to build circuits formed of physical neurons interconnected by physical synapses that perform memory in-situ, 

in a non-volatile way, thus drastically cutting the need to move data around the circuit and providing huge 

gains in speed and energy efficiency. This is unfortunately complicated by using Complementary Metal Oxide 

Semiconductor (CMOS) technology alone. Dozens of transistors are needed to imitate each neuron, and 

additional outside memories are required to execute synapses. CMOS-based artificial neurons and synapses are 

typically several micrometers wide. The number of physical neurons and synapses that can be blended into a 

CMOS chip is inherently limited by the chip area. This is problematic because the performance of neural 



                                                                                                                  e-ISSN: 2582-5208 
International Research Journal of  Modernization in Engineering   Technology  and  Science 

( Peer-Reviewed, Open Access, Fully Refereed International Journal ) 

Volume:03/Issue:11/November-2021             Impact Factor- 6.752                 www.irjmets.com   

www.irjmets.com                              @International Research Journal of Modernization in Engineering, Technology and Science 

 [894] 

networks increases with the number of neurons and synapses: ideal image recognition algorithms today 

involve millions of neurons and synapses on an average. Large numbers of neurons and synapses can be 

achieved by gathering chips. In addition, the whole system becomes heavy, and much energy is wasted in the 

interconnects. Nanodevices that can imitate important features of neurons and synapses at the nanoscale, such 

as non-linearity, memory, and learning, are required to build low-power chips comprising several millions of 

neurons and synapses. 

Finally, it is difficult to achieve a high degree of interconnection between neurons using CMOS technology only. 

The brain highlights an average of 10,000 synapses per neuron. Such connectivity is impossible to reproduce 

with current electronics. CMOS technology is mostly confined to two dimensions (2D), fanout is limited, and it is 

difficult to efficiently and fairly supply energy to components in the circuit. On the contrary, the brain is tri-

dimensional (3D), neuron axons and dendrites provide high fan-in/fan-out, and blood efficiently distributes 

energy to the entire system. 

III. SPIKING NEURAL UNIT (SNN) 

In spiking neurons, the input is filtered in some way, usually a low pass filter, and they fire when a state 

variable exceeds a threshold. The spike train is calculated using Dirac delta functions where tk is the spike time. 

We wish to express learning in an SNN as minimization of a loss function across an extensive number of 

training samples, similar to old machine learning. A learning process includes finding sets of synaptic weights 

that allow scattered representation to be performed as well as decreasing the sum of all scattered coding losses 

in the sparse coding case. Learning in an SNN naturally proceeds online, where training samples are sent to the 

network sequentially. 

 

 

 

 

IV. NEUROSCIENCE CONCEPTS AND HARDWARE 

Artificial Intelligence algorithms cannot compete with the complexity of the brain. Biological neurons are more 

than nonlinear functions. A spike is leaky, feature memory is stochastic, and it can oscillate and synchronize. 

Several functional slots integrate signals coming from different areas over a space that is spatially extended. 

Biological synapses are more than analog weights.  Some synapses transmit only a fraction of the spikes they 

receive, so they can be extremely stochastic. Often overlooked brain components play a critical role and are 

important to imitate: dendrites appear to be able to execute very complex computations, whereas astrocytes 

are involved in neuronal regulation. Artificial neural networks can benefit from all these attributes and thus are 

more appealing to implement. 

 

Through the related physical effects and intrinsic qualities of materials, all of these ideas have great potential if 

they can be realized at very low energy. The purpose of this research field was to exploit the exponential 

dependence of transistor leakage current on voltage. In the last decade, a huge variety of other physical 

phenomena, depicted, have been used to imitate interesting qualities of synapses and neurons. 
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V. LOGIC GATES AND APPLICATIONS 

A human brain performs synaptic operations every second. Therefore, it has an efficiency of about 3x1014 

operations per joule. Despite the slow and noisy parts  in our heads and bodies, the human brain can perform 

complex computations in real-time. In comparison with the computing efficiency of a digital microprocessor, it 

can be observed that the brain is no less than seven orders of magnitude more systematic . Additionally, neural 

networks, based on the real brain, have a great deal of connectivity, which is expected to contribute to the high 

efficiency of biological systems due to their fault tolerance. The neuron achieves the equivalent of a logical OR 

operation on the excitatory inputs. By interpreting pulse behavior as a logical value of 1, we can realize how the 

OR gate functions by using neurons with two excitatory inputs and the output feedback as a piece of inhibitory 

information. If the excitation ceases, the neuron returns to its comfortable state, which corresponds to a logical 

value of '0'. 

 

VI. NEURO-INSPIRED CHIP 

Artificial synapses and neurons are bound to neuromorphic chips, which simulate the action spikes within the 

human brain. These chips handle all of this processing on their own. This appears in smarter, far more energy-

efficient computing systems. An energy-efficient approach to AI computing workloads could be provided by 

neuro-inspired computing chips combine features derived from neural systems. We analyze four key metrics 

for benchmarking neuro-inspired computing chips, including computing density, energy efficiency, computing 

accuracy, and on-chip learning capability, and discuss co-design principles, from the device to the algorithm 

level, for neuro-based computing chips using non-volatile memory. 
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VII. NEUROMORPHIC SENSORS 

The concept of neuromorphic systems can be extended to sensors. A neuromorphic camera is one example. 

Researchers are rapidly creating different variations of neuromorphic designs, as they did in the early days of 

neural networks. As a result, the boundary between research tools for neuromorphic computing and tools for 

industrial adoption is still blurry from a practical perspective. Generally speaking, neuromorphic hardware can 

be divided into digital, analog, and mixed-signal circuits. Several architectures have been proposed for 

performing neurons and synapses in hardware. Digital circuitry is most commonly used to implement 

neuromorphic architectures. Among the main advantages of this type of circuitry is the ease of development, 

low power dissipation, and reusability. The main reason for the popularity of digital neuromorphic 

architectures over their analog counterparts is the low development cost. An example is the Digital Neural 

Array (DNA), which is an array of digital neurons on a large scale. DNAs target both FPGAs and ASICs. FPGAs, 

for example, allow reprogramming, while ASICs offer higher density and more reliable performance despite a 

lower level of flexibility. Analog circuitry is less expressed than digital architectures, in spite of its greater 

suitability for designing neuromorphic systems. The physical properties of analog implementations are similar 

to those of neuromorphic architectures and, as with SNNs, these architectures are robust to noise, making them 

an ideal hardware implementation. Such physical characteristics include reliability and asynchronous 

operation. The Field-Programmable Analog Array (FPAA) is the best device for analog circuits. The Field-

Programmable Neural Array, a custom design aimed at neuromorphic applications, uses programmable 

components to mimic neuron and synapse functions. 

 

VIII. NEURO-INSPIRED COMPUTING USING PCRAM TECHNOLOGY 

A dissection of BioNN reveals that the basic tasks of neuro-inspired computing are to replicate fundamental 

synapses, neurons, and their synaptic behaviors using hardware technology. Throughout the decades, there 

have been many implementations of neuro-inspired computing using PCRAM technology. Here, we present 

comprehensive discussions about how PCRAM is utilized for neural-inspired computing, including the 

fundamental electric-induced conductance mechanism and advanced techniques to simulate biological 

components and behavior, as well as current state-of-the-art in intelligent applications built on PCRAM. 

ELECTRIC-INDUCED CONDUCTANCE CONTROLLABILITY 

Based on biological synaptic behavior, a key precondition for implementing BioNN using hardware is the 

continuous regulation of conductance. The feasibility of PCRAM originates from the electric-induced 

controllable phase change that occurred at the active region. By applying appropriate electrical stimulation to 
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the active area, crystallinity and amorphous states can be controlled bilaterally and continuously. The process 

of crystalline-to-amorphous change accompanied by prompt quenching is triggered by high and narrow pulses, 

which is akin to synaptic depression. Additionally, the reverse process of mimicking synaptic potentiation 

involves long and moderate heating, which typically involves applying a lower and wider pulse. PCRAM can 

therefore be reliably controlled with special programming pulses in a bidirectional manner, i.e., multilevel 

reduction in conductance and cumulative enhancement in conductance. 

In order to holp up  a wide range  of workloads, SNN connectivity needs to be flexible and well-provisioned. 

Some networks may call for dense, all-to-all connectivity while others may call for sparse connectivity; some 

may have uniform graph degree patterns, others power-law distributions, some may require precision synaptic 

weights, for example, to support learning, while others can be done with binary connections. As a network 

grows, algorithm performance scales along with it, as revealed by neuron counts as well as neuron-to-neuron 

fanout degrees. Biologically, this rule holds true. Based on the O(N2) scaling connectivity state in many fan outs, 

it becomes an enormous challenge to support networks with high levels of connectivity today using integrated 

circuit technology. 

To address the challenge, it supports a range of features to relax the sometimes severe constraints that other 

neuromorphic designs had inflicted on the programmer: 

a. Sparse network concentration. In addition to thick matrix connectivity, it also supports three sparse matrix 

compression models in which neuron indices are calculated using index data stored with synapse state 

variables. 

b. Core to core multicast. As the network connectivity requires, any neuron may send a unique spike to any 

number of objective cores. 

c. Variable synaptic formats. Loihi supports any weight precision between one and nine bits, signed and 

unsigned, and there is no restriction on how the weight accuracy is set. 

a. PCRAM Neuron 

The LIF mechanism in BioNN dominates information transmission through the neuron. According to the 

Hodgkin–Huxley model and various threshold-based neuronal models, the LIF mechanism is driven by complex 

electrochemical mechanisms combined with the bilayer structure of the membrane. Postsynaptic potentials 

from dendrites modulate membrane potential stochastically. The sum of potentials above the firing threshold 

causes neurons to export new potential via axons. 
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IX. CONCLUSION 

Artificial intelligence is advancing rapidly throughout the world. We will have exponentially more devices 

connected to the cloud by the end of 2030 than we do now. In addition to more devices on the cloud, there are 

more data traffic and more hardware requirements. In spite of the current devices, data traffic remains high, 

and a considerable amount of power and resources are being consumed. Further, it is concerning to know that 

support structures of information technology are not growing as fast as the technology itself, and we may find 

ourselves in a situation sooner rather than later when no amount of hardware or software can handle the 

amounts of data that smart devices will generate. These problems can be solved by neuromorphic computing, 

which handles much larger volumes of data with drastically reduced energy consumption for the same. 

Artificial synapse is the groundbreaking technology that makes neuromorphic computing a reality. The artificial 

synapse is still being researched to fully understand and utilize its benefits. Memristors are the best examples 

and proof of the level of advancement that we have achieved in the recent past to take us further into the world 

of artificial intelligence. Although neuromorphic computing has physical and technical limitations and 

challenges, it is growing at a significant rate and is expected to change computing for good within the next few 

years. 
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